Desalination R&D project completed by Siemens, sets new benchmark on low-energy seawater desalination

Sponsored by
A Siemens R&D engineer examines a state-of-the-art seawater desalination prototype in Singapore. Photo: Siemens AG

SINGAPORE, July 5, 2011 -- A Siemens research and development initiative has shown that a new desalination process reduces desalting energy by over 50% compared to best available technology.

The research was conducted at a demonstration plant built in Singapore to treat seawater to drinking water quality. Since December 2010, the Siemens demonstration unit has been treating 50 m³ of seawater per day at a PUB facility in Singapore.

The project goal was to produce World Health Organization standard drinking water quality from seawater, at the same time cutting energy consumption by half compared to current technologies. Instead of using reverse osmosis, which requires high-pressure pumps to force water through semi-permeable membranes, the Siemens engineers turned to electrochemical desalination. The process combines electrodialysis (ED) and continuous electrodeionization (CEDI), both applying an electric field to draw sodium and chloride ions across ion exchange membranes and out of the water. As the water itself does not have to pass through the membranes, the process can be run at low pressure, and hence low power consumption.

The seawater is pre-treated with a self-cleaning disk filter, followed by Memcor ultrafiltration modules. The pilot desalination plant is composed of three ED units arranged in series to handle high concentrations of salt. They are followed by three CEDI units assembled in a parallel flow configuration to remove smaller amounts of salt.

The energy demand of the whole process including pumping, pre-treatment, desalting, and post-treatment is less than half of what is used by the best available seawater desalination technologies today, which is typically between 3.4 and 4.8 kWh/m³. Besides the energy savings, other advantages are low vibration and noise levels, improved safety, and only minimal pre- and post-treatment.

Siemens said it is now poised to transition this new technology to the product development phase. The next step will be to set up a full-scale system in cooperation with Singapore's national water agency PUB by 2013.

###

Sponsored by

TODAY'S HEADLINES

NSF to begin testing of new ballast water treatment system for USCG type approval

The NSF International Independent Laboratory will begin the testing of Evoqua's SeaCURE ballast water management system in preparation of the U.S. Coast Guard's full type approval. 

SUEZ to expand major Middle East WWTP in new contract

SUEZ ENVIRONNEMENT, through its subsidiary Degrémont, has been commissioned by the Government of Qatar's Public Works Authority (Ashghal), in consortium with its Japanese partner Marubeni Corporation, to expand the Doha West wastewater treatment and recycling plant.

IDA announces deadline extension for 2014-2015 Fellowship Award applications

The International Desalination Association has extended the deadline of applications for its 2014-15 Fellowship Program, giving candidates until Jan. 31, 2015 to apply.

Texas launches new state-of-the-art water technology accelerator

The Texas Research & Technology Foundation has launched AccelerateH2O -- the Texas Water Technology Accelerator -- a new, state-of-the-art center focused on advancing new and existing water technologies.

FOLLOW US ON SOCIAL MEDIA