Research finds bacterial protein captures viruses in contaminated water

Sponsored by

Dec. 16, 2011 -- Access to clean water is a necessity often taken for granted. However UNICEF estimates that 900 million people across the world do not have access to safe drinking water. New research published in BioMed Central's open access journal BMC Biotechnology shows that an enteric virus-binding protein (EVBP), isolated from bacteria found in activated sludge, is able to capture viruses often present in contaminated water.

One of the difficulties in measuring viral contamination in water is that viruses may be present at a very low concentration yet still make people ill. Even a single enteric virus can infect a human and cause gastroenteritis, and these viruses can survive for a long time in water.

Researchers from Tohoku University and Hokkaido University used activated sludge, produced during sewage treatment by aerating the sewage and allowing bacteria to breakdown organic material, as starting material in their search for a protein able to bind to enteric viruses. Using polymerase chain reaction (PCR) the researchers isolated the gene coding for one of the subunits of GroEL from sludge DNA. GroEL is a 14 subunit 'chaperone' protein which ensures that proteins are folded correctly during their manufacture.

Using biochemical and enzymatic assays the subunit was found to be able to capture enteric viruses. GroEL is able to bind to hydrophobic amino acids on the surface of proteins and it is thought that the newly isolated EVBP similarly binds to hydrophobic areas on the surfaces of viruses and viral fragments.

Dr Daisuke Sano from Hokkaido University explained, "Unlike virus-specific and expensive antibodies, EVBP bound all the enteric viruses we tested (norovirus, rotavirus and poliovirus). Once developed this easy-to-use method could be used to detect low concentrations of viruses in the clinic or environment."

For more information, read the full research article "Adsorption characteristics of an enteric virus-binding protein to norovirus, rotavirus and poliovirus" by Takahiro Imai, Daisuke Sano, Takayuki Miura, Satoshi Okabe, Keishi Wada, Yoshifumi Masago and Tatsuo Omura. BMC Biotechnology, December 2011.

###

Sponsored by

TODAY'S HEADLINES

Clearing Things Up at Prequannock WTP

In 2010, the city of Newark, N.J., retained Hatch Mott MacDonald to investigate potential solutions to a problem at Pequannock WTP. Decant tanks were providing minimal solids removal as a result of removed tube settlers from deterioration. Inclined plate settlers were identified as a feasible alternative for improving supernatant water quality and were selected for pilot testing.

Be the Change: Embracing New Approaches to Foster Innovation in the Water Industry

The pressure to accommodate change will drive our traditionally risk-averse industry to embrace new and different approaches at an accelerated pace. Further, the demand for a zero-energy footprint will also drive improvements in co-generation efficiencies, energy conservation and recovery methods, and comprehensive resource recovery.

CDC preparing Ebola guidance for wastewater treatment personnel

In a recent conference call with AWWA and other major water organizations, the CDC shared it has prepared and is conducting an expedited internal review of an interim guidance on wastewater worker safety and the inactivation of the Ebola virus by wastewater treatment processes.

New partnership to measure farmers' conservation impacts on U.S. water quality

The U.S. Department of the Interior and U.S. Department of Agriculture have announced a new partnership that will provide a clearer picture of the benefits of farmers' conservation practices on the quality of the nation's waters. 

FOLLOW US ON SOCIAL MEDIA