New Zealand chemists learn new way to convert groundwater into drinking water

Sponsored by

Wellington, New Zealand, Oct. 25, 2012 -- Chemists have discovered an innovative method for treating bore water in New Zealand and converting it into safe drinking water.

They’re currently trialing the system known as Perforated Electric Flow Through (PEFT), on a Waikato farm as a low-cost solution for developing countries where many people have limited access to clean and affordable water.

Associate Professor Alan Langdon and Post-Doctoral Researcher Hilary Nath from the University of Waikato decided to try using electrochemistry to remove the iron and manganese prevalent in bore water from Waikato’s peaty soils. In turn, the residues give the water its typical brown-orange color and generally make it undrinkable without expensive treatment using aerators, filters, ion exchangers and tanks, according to a Waikato statement.

Researchers came up with a simple system that uses electric current passing between two perforated titanium electrodes to turn naturally-occurring chloride ions in the water into chlorine.

The chlorine then oxidizes and precipitates out the metal contaminants and also disinfects the water passing through the system, making it safe to drink. Best of all, the whole system can be powered by a car battery.

The researchers noticed that the closer together the two electrodes were positioned, the higher the electric field generated between them. And the higher the electric field, the more potent the chlorine being produced.

The two together were so powerful that they could kill bugs in the water at much lower chlorine levels than normally required -- the electric field was able to puncture the membrane of a bug making it 100 times more susceptible to the disinfecting effect of the chlorine.

At slightly higher applied voltages, the PEFT cell can also disinfect water by the electric field alone, with no need to produce any chlorine.

“By bringing the electrodes closer together than anyone else has been able to we can reduce electrical resistance and consume less power,” said Nath. “And because the flow path through the cell is very short, we can achieve good water flow at modest pressure.”

A prototype will be on show at the University of Waikato stand at Equidays next month. Langdon and Nath are now testing the prototype and getting good results -- they’ve seen total oxidation of iron during their trial.

“The initial focus will be disinfection of harvested rain water, disinfection of water supplies derived from surface water and bore water contaminated with iron -- we need to be very sure our technology is robust before contemplating overseas markets, particularly in developing nations,” added Nath.

###

Sponsored by

Did You Like this Article? Get All the Water Industry News Delivered to Your Inbox or Mailbox

Subscribe to one of our magazines or email newsletters today at no cost and receive the latest information.

TODAY'S HEADLINES

ASPE welcomes Watts Water Technologies to Affiliate Sponsor Program

The American Society of Plumbing Engineers recently announced that Watts Water Technologies has joined the organization's Affiliate Sponsor Program.

New Products

Compilation of new products for the industrial water market.

EPA proposes new rules to improve waste management, protect waterways

The Environmental Protection Agency has proposed two new hazardous waste rules to strengthen environmental protection while reducing regulatory burden on businesses.

Products & Services: Pumps, Motors and Drives

Collection of pumps, motors, drives and related products and services.

FOLLOW US ON SOCIAL MEDIA

  

 


© 2015. PennWell Corporation. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS