Chesapeake Bay groundwater withdrawals causing sinking land, flooding risks

Sponsored by


Dec. 10, 2013 -- According to a new report by the U.S. Geological Survey (USGS), intensive groundwater withdrawals are a major cause of the sinking land, or land subsidence, that's contributing to flooding risks among communities and coastal habitats in the southern Chesapeake Bay region.

The report suggests that changing groundwater management practices could slow or mitigate land subsidence and relative sea-level rise. Moving groundwater pumping away from high-risk areas or decreasing groundwater withdrawal rates can reduce subsidence in low-lying areas prone to flooding. These results will be used by federal and state managers to consider adaptation strategies in their efforts to restore and protect the Chesapeake Bay.

Previous USGS studies have established that the Chesapeake Bay region has the highest rates of relative sea-level rise on the East Coast. Likewise, the sea-level rise rates around the Chesapeake Bay range from 3.2 to 4.7mm/per year with 4.4 mm/yr in Norfolk. (A penny is about 1 mm thick.) Land subsidence alone causes more than half of the observed relative sea-level rise in the southern Chesapeake Bay.

"From a practical viewpoint, sea level is relative to the land surface," said Jerad Bales, acting associate director for water at USGS.  "Whether the water is rising or the land is sinking, or both, the effect is the same: greater vulnerability to coastal storms and loss of important coastal habitat, both of which result in economic losses." 

While there are several factors influencing land subsidence, aquifer system compaction -- caused by extensive groundwater pumping in the Virginia Coastal Plain -- is a major cause in the Norfolk area. Land subsidence has occurred around Norfolk at an average rate of 3 mm/year since 1940. Low-lying communities and critical habitats are especially vulnerable to damage from the relative sea-level rise caused by land subsidence. Communities in the southern Bay can experience increased flooding. The loss of coastal marsh and wetlands decreases the extent of specific habitat that waterfowl need to winter in the Bay region.

Continued monitoring, mapping and modeling are scientific tools needed to help natural resource managers and urban planners understand and reduce or mitigate land subsidence. Changing resource management practices in response to rising seas and sinking land will require sustained public commitment.

The study was conducted by the USGS Virginia Water Science Center and the Office of Groundwater. The study circular is available online.

###

Sponsored by

Did You Like this Article? Get All the Water Industry News Delivered to Your Inbox or Mailbox

Subscribe to one of our magazines or email newsletters today at no cost and receive the latest information.

TODAY'S HEADLINES

Research reveals filtration favored over disinfection when treating ballast water

When treating ships' ballast water, new research conducted by the Analytical BioGeoChemistry research unit at the Helmholtz Zentrum München in Germany shows that filtration -- rather than disinfection -- can potentially serve as a more efficient method.

Kruger to provide advanced filtration system for FL reclaimed water project

Kruger was recently awarded a contract to furnish a Hydrotech Discfilter system for the Port Orange Reclaimed Water Reservoir and Filtration Project, located in Port Orange, Fla. 

Self-assembling, biomimetic membranes may lead to better water treatment, analysis finds

According to an international team of researchers from a wide range of universities, businesses and organizations, a synthetic membrane that self assembles and is easily produced may lead to better water purification.

NASA study shows CA’s 'rain debt' equal to average full year of precipitation

According to a new study conducted by NASA, the state of California accumulated a debt of about 20 inches of precipitation between 2012 and 2015 -- the average amount expected to fall in the state in a single year. 

FOLLOW US ON SOCIAL MEDIA

  

 


© 2015. PennWell Corporation. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS