Fracking wastewater radioactivity reduced with acid mine drainage, finds study

Sponsored by


DURHAM, NC, Jan. 9, 2014 -- According to a new study conducted by Duke University, acid mine drainage could help reduce radioactivity in wastewater generated from hydraulic fracturing.

"Fracking wastewater and acid mine drainage each pose well-documented environmental and public health risks. But in laboratory tests, we found that by blending them in the right proportions, we can bind some of the fracking contaminants into solids that can be removed before the water is discharged back into streams and rivers," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

The research also found that blending fracking wastewater with acid mine drainage could also help reduce the depletion of local freshwater resources by giving drillers a source of usable recycled water for the hydraulic fracturing process.

"Scarcity of freshwater in dry regions or during periods of drought can severely limit shale gas development in many areas of the United States and in other regions of the world where fracking is about to begin," Vengosh said. "Using acid mine drainage or other sources of recycled or marginal water may help solve this problem and prevent freshwater depletion."

Additional resources for hydraulic fracturing:

Fracking wastewater radioactivity reduced with acid mine drainage, finds study

Technology helps recycle Texas fracking flowback, produced water

Fracking Wastewater Management: Is Centralised Treatment the Way Forward?

Membrane distillation process proves successful for fracking wastewater

Water quality regs at U.S. shale oil, gas sites outlined at online database

Fracking Wastewater: Are Reed Beds the Answer?

A study last year by the Duke team showed that standard treatment processes only partially remove these potentially harmful contaminants from Marcellus Shale wastewater before it is discharged back into streams and waterways, causing radioactivity to accumulate in stream sediments near the disposal site.

Acid mine drainage flows out of abandoned coal mines into many streams in the Appalachian Basin. It can be highly toxic to animals, plants and humans, and affects the quality of hundreds of waterways in Pennsylvania and West Virginia. Because much of the current Marcellus shale gas development is taking place in regions where large amounts of historic coal mining occurred, some experts have suggested that acid mine drainage could be used to frack shale gas wells in place of freshwater.

To test that hypothesis, Vengosh and his team blended different mixtures of Marcellus Shale fracking wastewater and acid mine drainage, all of which were collected from sites in western Pennsylvania and provided to the scientists by the industry.

After 48 hours, the scientists examined the chemical and radiological contents of 26 different mixtures. Geochemical modeling was used to simulate the chemical and physical reactions that had occurred after the blending; the results of the modeling were then verified using x-ray diffraction and by measuring the radioactivity of the newly formed solids.

"Our analysis suggested that several ions, including sulfate, iron, barium and strontium, as well as between 60 and 100 percent of the radium, had precipitated within the first 10 hours into newly formed solids composed mainly of strontium barite," Vengosh said. These radioactive solids could be removed from the mixtures and safely disposed of at licensed hazardous-waste facilities, he said. The overall salinity of the blended fluids was also reduced, making the treated water suitable for reuse at fracking sites.

"The next step is to test this in the field. While our laboratory tests show that is it technically possible to generate recycled, treated water suitable for hydraulic fracturing, field-scale tests are still necessary to confirm its feasibility under operational conditions," Vengosh said.

The peer-reviewed study was published in late December 2013 in the journal Environmental Science & Technology.

###

Sponsored by

TODAY'S HEADLINES

City of Lima, Ohio, enters CWA settlement to reduce critical sewage overflows

To resolve claims that untreated sewer discharges were released into the Ottawa River during wet weather, the city of Lima, Ohio, has entered into a Clean Water Act settlement with the Environmental Protection Agency, U.S. Department of Justice and State of Ohio.

AWWA to Congress: Nutrient pollution reduction key to preventing cyanotoxins

In a testimony recently held before the U.S. House Subcommittee on Environment and the Economy, American Water Works Association President John Donahue stressed that the solution to keeping drinking water safe from cyanotoxins begins with reducing nutrient pollution.

Reclamation invests $9.2M in water, power research in West amid drought

Following a year of record drought, water managers throughout the West are searching for information and ideas to ensure a reliable and sustainable water supply. To meet this growing need, the Bureau of Reclamation has officially awarded $9.2 million for 131 research projects.

City of Philadelphia names first 'Stormwater Pioneer'

The Philadelphia Water Department has named Stanley's True Value Hardware as the city's first Stormwater Pioneer. The store's third-generation owners were recognized as role models for small business owners and private developers looking to reduce stormwater runoff.

FOLLOW US ON SOCIAL MEDIA