Fracking wastewater radioactivity reduced with acid mine drainage, finds study

Sponsored by

DURHAM, NC, Jan. 9, 2014 -- According to a new study conducted by Duke University, acid mine drainage could help reduce radioactivity in wastewater generated from hydraulic fracturing.

"Fracking wastewater and acid mine drainage each pose well-documented environmental and public health risks. But in laboratory tests, we found that by blending them in the right proportions, we can bind some of the fracking contaminants into solids that can be removed before the water is discharged back into streams and rivers," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

The research also found that blending fracking wastewater with acid mine drainage could also help reduce the depletion of local freshwater resources by giving drillers a source of usable recycled water for the hydraulic fracturing process.

"Scarcity of freshwater in dry regions or during periods of drought can severely limit shale gas development in many areas of the United States and in other regions of the world where fracking is about to begin," Vengosh said. "Using acid mine drainage or other sources of recycled or marginal water may help solve this problem and prevent freshwater depletion."

Additional resources for hydraulic fracturing:

Fracking wastewater radioactivity reduced with acid mine drainage, finds study

Technology helps recycle Texas fracking flowback, produced water

Fracking Wastewater Management: Is Centralised Treatment the Way Forward?

Membrane distillation process proves successful for fracking wastewater

Water quality regs at U.S. shale oil, gas sites outlined at online database

Fracking Wastewater: Are Reed Beds the Answer?

A study last year by the Duke team showed that standard treatment processes only partially remove these potentially harmful contaminants from Marcellus Shale wastewater before it is discharged back into streams and waterways, causing radioactivity to accumulate in stream sediments near the disposal site.

Acid mine drainage flows out of abandoned coal mines into many streams in the Appalachian Basin. It can be highly toxic to animals, plants and humans, and affects the quality of hundreds of waterways in Pennsylvania and West Virginia. Because much of the current Marcellus shale gas development is taking place in regions where large amounts of historic coal mining occurred, some experts have suggested that acid mine drainage could be used to frack shale gas wells in place of freshwater.

To test that hypothesis, Vengosh and his team blended different mixtures of Marcellus Shale fracking wastewater and acid mine drainage, all of which were collected from sites in western Pennsylvania and provided to the scientists by the industry.

After 48 hours, the scientists examined the chemical and radiological contents of 26 different mixtures. Geochemical modeling was used to simulate the chemical and physical reactions that had occurred after the blending; the results of the modeling were then verified using x-ray diffraction and by measuring the radioactivity of the newly formed solids.

"Our analysis suggested that several ions, including sulfate, iron, barium and strontium, as well as between 60 and 100 percent of the radium, had precipitated within the first 10 hours into newly formed solids composed mainly of strontium barite," Vengosh said. These radioactive solids could be removed from the mixtures and safely disposed of at licensed hazardous-waste facilities, he said. The overall salinity of the blended fluids was also reduced, making the treated water suitable for reuse at fracking sites.

"The next step is to test this in the field. While our laboratory tests show that is it technically possible to generate recycled, treated water suitable for hydraulic fracturing, field-scale tests are still necessary to confirm its feasibility under operational conditions," Vengosh said.

The peer-reviewed study was published in late December 2013 in the journal Environmental Science & Technology.


Sponsored by

Did You Like this Article? Get All the Water Industry News Delivered to Your Inbox or Mailbox

Subscribe to one of our magazines or email newsletters today at no cost and receive the latest information.


Water startup to improve seawater desalination with innovative RO technology

According to Jaime Mateus, CEO of Anfiro, a water technology startup addressing global freshwater scarcity, his company -- based on innovations from Purdue University and the University of Notre Dame -- could improve membranes used in seawater desalination plants.

EPA settles with East Bay MUD over hazardous waste violations

The Environmental Protection Agency recently announced a settlement with East Bay Municipal Utility District for improper management of hazardous waste at its Oakland wastewater treatment plant. The public utility agreed to pay a $99,900 penalty.

NSF Int'l, Global-Mark partner to provide certification of plumbing products in Australia

NSF International and Global-Mark have partnered to provide WaterMark certification, which is required for all plumbing products used in Australia.

NAWC formally announces new Board of Directors for organization

Earlier this week, the National Association of Water Companies officially announced the organization's new board of directors at its annual Water Summit in the city of Scottsdale, Ariz.




© 2015. PennWell Corporation. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS