Study recommends filter bed substrates, plant types for rain gardens

Sponsored by


RALEIGH, NC, July 21, 2014 -- Researchers from North Carolina State University are looking to rain gardens as one way to remediate the water quality concerns caused by urban stormwater runoff. Rain gardens -- also known as bioretention cells -- are depressions in the landscape that trap stormwater runoff so microbial activity, filtration/adsorption and plant uptake can remove pollutants. Typically, the gardens are excavated, backfilled with a filter bed substrate, then planted with vegetation that helps to remove pollutants.

"The filter bed substrate is the foundation of the rain garden and gives it the ability to infiltrate runoff, slow drainage, support plant growth, and remove pollutants," explained Helen Kraus, lead author of a study published in HortScience. Kraus and her colleagues designed experiments to assess three different filter bed substrates for their effectiveness in nutrient removal and supporting plant growth.

The research team constructed 12 rain gardens filled with one of three filter bed substrates. The gardens were planted with 16 plant species and then irrigated with stormwater. The substrates used in the experiments included a sand-based substrate (sand) composed of 80% washed sand, 15% clay and silt fines, and 5% pine bark; a soil-based substrate (soil) composed of 50% sandy loam soil and 50% pine bark; and a slate-based substrate (slate) composed of 80% expanded slate and 20% pine bark.

The substrates differed in infiltration and drainage rates as well as chemical composition. Further, diverse plant species that included trees, shrubs, herbaceous perennials, a grass, and a rush were selected to allow the researchers to evaluate the performance of a wide range of evergreen, deciduous, woody, and herbaceous plants.

Results showed that sand had good overall retention of pollutants except nitrogen. Soil had the lowest remediation of phosphorus and highest concentration of phosphorus in its effluent and was similar in nitrogen removal efficiency to slate. Slate had the best retention of nitrogen and phosphorus. "Overall, all three substrates functioned in reducing the quantity of pollutants in urban stormwater runoff," the authors noted. They added that the impact of substrate on remediation appeared to lessen by the second season of the study; as the plants grew, root growth impacted infiltration, and nutrient uptake by the plants increased.

The researchers determined that 11 of the 16 species used in the experiments grew well in the rain gardens. Betula nigra (river birch), Betula nigra 'Duraheat', Magnolia virginiana (sweet bay magnolia), Magnolia virginiana 'Sweet Thing', Itea virginica (Virginia sweetspire), Itea virginica 'Henry's Garnet', Panicum virgatum 'Shenandoah', Juncus effuses 'Frenzy', Helianthus angustifolius (swamp sunflower), Helianthus angustfolius 'First Light', and Eupatorium purpureum subsp. maculatum (Joe pye weed) performed well in the experiments and could be used as rain garden plants, according to the authors.

See also:

"Green Gardening: Program Hires Youth to Build Rain Gardens, Improve Communities' Stormwater Management"

"MN develops first-of-its-kind stormwater management program using trees over pipes"

###

Sponsored by

Did You Like this Article? Get All the Water Industry News Delivered to Your Inbox or Mailbox

Subscribe to one of our magazines or email newsletters today at no cost and receive the latest information.

TODAY'S HEADLINES

Research reveals filtration favored over disinfection when treating ballast water

When treating ships' ballast water, new research conducted by the Analytical BioGeoChemistry research unit at the Helmholtz Zentrum München in Germany shows that filtration -- rather than disinfection -- can potentially serve as a more efficient method.

Kruger to provide advanced filtration system for FL reclaimed water project

Kruger was recently awarded a contract to furnish a Hydrotech Discfilter system for the Port Orange Reclaimed Water Reservoir and Filtration Project, located in Port Orange, Fla. 

Self-assembling, biomimetic membranes may lead to better water treatment, analysis finds

According to an international team of researchers from a wide range of universities, businesses and organizations, a synthetic membrane that self assembles and is easily produced may lead to better water purification.

NASA study shows CA’s 'rain debt' equal to average full year of precipitation

According to a new study conducted by NASA, the state of California accumulated a debt of about 20 inches of precipitation between 2012 and 2015 -- the average amount expected to fall in the state in a single year. 

FOLLOW US ON SOCIAL MEDIA

  

 


© 2015. PennWell Corporation. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS