Large U.S. rivers becoming less acidic, finds new study

Sponsored by


July 7, 2014 -- A new study conducted by the U.S. Geological Survey (USGS) has found that several large rivers in the United States are currently less acidic due to decreasing acidic inputs, such as industrial waste, acid mine drainage and atmospheric deposition. It indicated that alkalinity, a measurement of a river's capacity to neutralize acid inputs, has increased over the past 65 years in 14 of the 23 rivers assessed.

Reduced acidity levels were especially common in rivers in the Northeast, such as the Delaware and Schuylkill Rivers; the Midwest, such as the Illinois and Ohio Rivers; and the Missouri River in the Great Plains.

"Long-term monitoring of stream flow and water quality is essential to track how changes in climate and land use are impacting rivers and how riverine inputs may impact valuable commercial and recreational fisheries in estuaries across the nation," said William Werkheiser, associate director for water. "Increasing alkalinity levels in large rivers across the country since 1945 is a positive trend."

Acidification of U.S. rivers in the early part of the 20th century was mostly associated with these acid inputs, which reduced the alkalinity of some rivers and caused them to become more acidic. Increased alkalinity concentrations in large rivers draining a variety of climate and land-use types in this country are an indicator of recovery from acidification.

By looking at changes in multiple chemicals, scientists conducting the study found that the alkalinity increases were due to decreasing acidic inputs. The reasons for decreased acidic inputs have been diverse and include greater regulation of industrial emissions and waste treatment and increased use of agricultural lime.

"This study shows us that our cumulative management actions over the last half century have reduced acidity levels in U.S. rivers," said lead author Edward Stets, research ecologist at the USGS. "Acidification of rivers that empty into estuaries can adversely impact shell-bearing organisms such as oysters and crabs."

See also:

"Wetlands could be used to improve quality of acid streams, researchers say"

"Ocean acidification has potential to degrade entire ecosystems, finds study"

###

Sponsored by

TODAY'S HEADLINES

Research reveals dramatic growth of global hydropower expected this decade

Based on new statistics, an unprecedented boom in global hydropower dam construction is underway, primarily in developing countries and emerging economies.

DOD, NIH awards Cambrian prestigious contracts to further develop advanced biotechnologies

Cambrian Innovation recently won a prestigious contract from the Department of Defense and another two from the National Institutes of Health to further develop biotechnologies to dramatically improve water treatment, testing and remediation.

MWH Global promotes nearly a dozen employees to VP positions

MWH Global has officially announced the promotion of three employees to senior vice president and eight others to vice president. The promotions were confirmed by the MWH board of directors at its August board meeting.

Online Zeta Potential Measurement Provides Water Treatment Control, Cost Reduction

Online zeta potential measurements can provide real-time water quality monitoring and support effective process control under all circumstances. The value of online measurement is illustrated through the experiences of Aurora Water, which is using zeta potential at one facility as both an offline and online tool for monitoring and controlling water treatment processes.

FOLLOW US ON SOCIAL MEDIA