NASA satellites detect possible disastrous flooding months in advance, finds research

Sponsored by

 

IRVINE, CA, July 8, 2014 -- According to new research from UC Irvine, data from NASA satellites can greatly improve predictions of how likely a river basin is to overflowing months before it actually does. The use of such data, which capture a much fuller picture of how water is accumulating, could result in earlier flood warnings, potentially saving lives and property.

A case study of the catastrophic 2011 Missouri River floods demonstrated that factoring into hydrologic models the total water storage information from NASA's Gravity Recovery & Climate Experiment (GRACE) mission -- including groundwater accumulation below the surface -- could have increased regional flood warning lead times from two months to as long as five months.

A review of the 2011 Columbia River floods found that warnings could have been issued three months before they occurred. Comprehensive underground measurements are not currently part of predictive models, which typically take into account river flow rates and some snowfall amounts.

"GRACE data contain important hydrologic information that is not currently being utilized to estimate regional flood potential," said lead author J.T. Reager, who did the work as a UCI postdoctoral researcher and recently joined NASA's Jet Propulsion Laboratory as a research scientist. "This could significantly increase flood prediction lead times within large river basins."

Inland flooding causes an average of 133 deaths and $4 billion in property losses per year in the U.S., according to the National Weather Service. Earlier flood predictions could help water managers better plan for possible water diversion and evacuation strategies.

The two GRACE satellites provide a means to observe monthly variations in total water storage within large river basins based on measurements of tiny changes in Earth's gravitational field: When the amount of water stored in a region increases, the gravitational pull from that area increases proportionately -- which the satellites can detect.

"These data can show us when river basins have been filling with water over several months," said senior author Jay Famiglietti, a UCI Earth system scientist who's on leave to be JPL's senior water scientist. "We're not talking about actual flooding but about the saturation level of the ground and its predisposition to flooding. When it finally rains and the basin is full, there is nowhere else for the water to go."

See also:

"NASA's Global Precipitation Measurement Initiative Aims to Enhance Water Resource Management from Space"

"Unique NASA film illustrates Earth's water journey, precipitation research initiative"

###

Sponsored by

TODAY'S HEADLINES

New act introduced in Congress addressing rural communities' water infrastructure funding crisis

Congressman Marlin Stutzman (R-IN) has introduced the ''Water Supply Cost Savings Act,'' legislation that would provide small communities across the nation with critical information on the use of water wells and water-well systems to deliver high-quality, affordable drinking water.

Intelligent software helping India water authority achieve complete equitable water supply

Kerala Water Authority of the Government of Kerala, India, has implemented the use of advanced analytics and mobility solutions from IBM to better analyze, monitor and manage water distribution in the city of Thiruvananthapuram.

SUEZ ENVIRONNEMENT announces new acquisition with Derceto

Through its subsidiary Ondeo Systems, SUEZ ENVIRONNEMENT has finalized the acquisition of Derceto.

Texas water district earns ISI Envision Silver Award for pipeline project

The Institute for Sustainable Infrastructure has announced that the Tarrant Regional Water District of North Central Texas has earned the Envision sustainable infrastructure rating system's Silver award for its Line J, Section 1 Pipeline project.

FOLLOW US ON SOCIAL MEDIA