Increased water recycling, irrigation key to reducing global water scarcity, study finds

Sponsored by

Aug. 29, 2014 -- A new study conducted by researchers from McGill and Utrecht University outlines strategies in six key areas that they believe can be combined in different ways in different parts of the world in order to effectively reduce water stress and ultimately minimize water scarcity.

Water scarcity is not a problem just for the developing world. In California, legislators are currently proposing a $7.5-billion emergency water plan to their voters, and U.S. federal officials last year warned residents of Arizona and Nevada that they could face cuts in Colorado River water deliveries in 2016.

Irrigation techniques, industrial and residential habits combined with climate change lie at the root of the problem. But despite what appears to be an insurmountable problem, it is possible to turn the situation around and significantly reduce water scarcity in just over 35 years, according to the researchers.

Water stress occurs in an area where more than 40 percent of the available water from rivers is unavailable because it is already being used -- a situation that currently affects about a third of the global population and may affect as many as half the people in the world by the end of the century if the current pattern of water use continues.

The researchers separate six key strategy areas for reducing water stress into "hard path" measures, involving building more reservoirs and increasing desalination efforts of sea water, and "soft path" measures that focus on reducing water demand rather than increasing water supply thanks to community-scale efforts and decision-making, combining efficient technology and environmental protection.

The researchers believe that while there are some economic, cultural and social factors that may make certain of the "soft path" measures such as population control difficult, these measures offer the more realistic path forward in terms of reducing water stress. These strategies are identified below:

"Soft measures"

  • Agricultural water productivity could be improved in stressed basins where agriculture is commonly irrigated. Reducing the fraction of water-stressed population by 2 percent by the year 2050 could be achieved with the help of new cultivars, or higher efficiency of nutrients application. Concerns include the impacts of genetic modification and eutrophication.
  • Irrigation efficiency could also be improved in irrigated agricultural basins. A switch from flood irrigation to sprinklers or drips could help achieve this goal, but capital costs are significant and soil salinization could ensue.
  • Improvements in domestic and industrial water use could be achieved in water-stressed areas through significant domestic or industrial water use reduction, for example, by reducing leakage in the water infrastructure and improving water-recycling facilities.
  • Limiting the rate of population growth could help in all water-stressed areas, but a full water-stress relief would require keeping the population in 2050 below 8.5 billion, for example, through help with family planning and tax incentives. However, this could be difficult to achieve, given current trends.

"Hard measures"

  • Increasing water storage in reservoirs could, in principle, help in all stressed basins with reservoirs. Such a strategy would require an additional 600 km3 of reservoir capacity, for example, by making existing reservoirs larger, reducing sedimentation or building new ones. This strategy would imply significant capital investment and could have negative ecological and social impacts.
  • Desalination of seawater could be ramped up in coastal water-stressed basins, by increasing either the number or capacity of desalination plants. A 50-fold increase would be required to make an important difference, which would imply significant capital and energy costs, and it would generate wastewater that would need to be disposed of safely.

See also:

"New study provides first global look of Earth's water-stressed cities"

"Renewable energy drive could intensify water scarcity, says new report"

###

Sponsored by

Did You Like this Article? Get All the Water Industry News Delivered to Your Inbox or Mailbox

Subscribe to one of our magazines or email newsletters today at no cost and receive the latest information.

TODAY'S HEADLINES

Xylem to help improve Chesapeake Bay water quality with treatment technology

Xylem has been awarded a contract to provide an existing wastewater treatment plant with advanced treatment technology, which will play a key role in an initiative focused on improving water quality in the Chesapeake Bay.

EPA awards $80M contract to Cadmus for drinking water protection support

The Cadmus Group announced that it has been awarded a seven-year contract worth more than $80 million with the Environmental Protection Agency's Office of Ground Water and Drinking Water.

Investment in CA water irrigation improvements paying off amid drought

Thanks to irrigation improvements across the state of California -- which agricultural producers have implemented with help from the Natural Resources Conservation Service -- many farmers remain successful despite severe water cutbacks amid ongoing drought.

Aclara introduces smart infrastructure network for water, gas and electric utilities

Aclara has introduced the Synergize network, a fully integrated solution for gas, water and electric utilities that offers high performance and a low cost of ownership.

FOLLOW US ON SOCIAL MEDIA

  

 


© 2015. PennWell Corporation. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS