New research shows Chesapeake Bay surface water temperature increasing over time

Oct. 16, 2015
New research from a study completed by Haiyong Ding and Andrew Elmore of the University of Maryland Center for Environmental Science's Appalachian Laboratory shows that surface water temperature in the Chesapeake Bay is increasing more rapidly than air temperature.

FROSTSBURG, MD, Oct. 16, 2015 -- New research from a study completed by Haiyong Ding and Andrew Elmore of the University of Maryland Center for Environmental Science's Appalachian Laboratory shows that surface water temperature in the Chesapeake Bay is increasing more rapidly than air temperature, signaling a need to look at the impact of warming waters on one of the largest and most productive estuaries in the world.

Trends of increasing water temperature were found for more than 92 percent of the Chesapeake Bay. Water temperature has been increasing more rapidly than air temperature in some areas, particularly in the main stem of the Bay and in the Potomac estuary. The Patapsco River in Baltimore showed the fastest warming of any area of the Bay, implicating urbanization of the watershed and use of the Bay's waters to cool power plants along its shore.

Water temperature is one of the most important factors in understanding the functioning of an aquatic ecosystem. It signals spawning time for fish and warmer water holds less dissolved oxygen than colder water, thereby making estuarine ecosystems experiencing eutrophication or algal blooms more susceptible to dead zones. Many aspects of estuarine management and restoration are dependent on good temperature data.

While warming water temperature in the Bay is not a novel finding, the study used satellite remote sensing data to map a 30-year average minimum and maximum temperatures across the Bay north of the Potomac River. For decades, measurements have been taken from piers, stationary buoys and mobile platforms, which is expensive and time consuming to deploy over large bodies of water.

Elmore and his research team used data from satellites that orbit the earth taking a picture of the Chesapeake Bay every 16 days. Because water emits electromagnetic radiation characteristic of its temperature, each satellite image can be converted to a map of water surface temperature. By analyzing images in consecutive 5-year groups, the researchers were able to separate seasonal variation from long-term trends.

Increasing water temperatures can be driven by climate change, coastal urbanization (since 1975, urban land cover has increased by more than 100 percent in portions of the coastal plain adjacent to the Bay), runoff from impervious surfaces (imagine the stormwater during a hot afternoon thunderstorm running into a stream at bath-water temperatures), and discharges from industrial processes, such as power plants that use water from the Bay and its tributaries for cooling.

The study compared annual average water surface temperatures for the past 30 years against air temperature records. Increasing trends in air and water temperature were found at all of the stations studied, with rates generally ranging between 0.5 and 1 degree Celsius every 10 years.

See also:

"USDA commits $4M in several states to improve Chesapeake Bay water quality"

"Scientists studying cause of major underwater grass comeback in Chesapeake Bay"

###

Sponsored Recommendations

SmartSights WIN-911 Alarm Notification Software Enables Faster Response

March 15, 2024
Alarm notification software enables faster response for customers, keeping production on track

Automated Fresh Water Treatment

March 15, 2024
SCADA, Automation and Control for Efficient and Compliant Operations

Digital Transformation Enables Smart Water

March 15, 2024
During this webinar we will discuss factors driving the transformation to digital water, water industry trends, followed by a summary of solutions (products & services) available...

Automation for Water Treatment and Distribution Systems

Jan. 31, 2024
Dependable, Flexible Control Solutions to Maximize Productivity