World’s Largest Recharge System Starts Production

Sponsored by

I’ve been reading and writing about the growth of membrane treatment systems since I became editor of WaterWorld in 1994. Early on, I began hearing about the legendary Water Factory 21 in Orange County, CA, and the research being conducted there.

Earlier this year, Orange County celebrated the launch of the world’s largest advanced water purification project of its kind, the Groundwater Replenishment (GWR) System. Developed jointly by the Orange County Water District (OCWD) and the Orange County Sanitation District (OCSD), the system takes highly treated sewer water and puts it through a three-step purification process that includes microfiltration, reverse osmosis and disinfection with ultraviolet light and hydrogen peroxide. The result is near-distilled-quality water that is used to recharge Orange County’s groundwater basin.

The culmination of decades of research, the GWR System generates enough purified water to meet the needs of 500,000 people in northern and central Orange County. The new system has the capacity to produce 70 mgd. Approximately 35 mgd is injected into OCWD’s expanded seawater barrier to prevent ocean water from contaminating the groundwater supply. The remaining 35 mgd is pumped to the district’s spreading basins in Anaheim where it mixes with Santa Ana River water and other imported water sources, and percolates into the groundwater basin.

Over time, the GWR System will help improve and protect the overall water quality in the groundwater basin by reducing the mineral content and preventing ocean water contamination. Orange County officials also hope it will provide a reliable, locally controlled supply of water during droughts.

Of course, membranes are at the heart of the system Groundwater Replenishment system.

Secondary treated wastewater that was formerly discharged to the ocean now passes through a treatment facility that includes low-pressure submerged membranes. The system is composed of 26 compact Memcor units. The modules are arranged in racks, and sit 14 feet below the raw water elevation. This allows the OCWD to make use of the hydraulic gradient, eliminating the need to pump water into the membrane cells.

While there as been resistance to the concept of recycling wastewater for human consumption, advances in reverse osmosis, microfiltration and disinfection techniques make water reuse a very viable option. The only real concern at this time is cost, and that’s coming down at the same time that water availability is declining.

There’s not doubt we’re going to be seeing a lot more of this type of project in the years ahead.

Click here to enlarge image

James Laughlin,
Editor/Associate Publisher, WaterWorld magazine

Sponsored by

TODAY'S HEADLINES

EPA announces major modifications to ongoing VT landfill Superfund site remedy

EPA has proposed major recommended modifications to the ongoing remedy of the BFI Rockingham Landfill Superfund Site in Rockingham, Vt., that include an increased timeframe to cleanup groundwater, additional groundwater restrictions, and revised arsenic and lead cleanup levels.

Chevron certified as first company to complete rigorous CSSD evaluation process

Chevron was certified by the Center for Sustainable Shale Development as the first company to successfully complete its rigorous evaluation and verification process.

IEC grants final unanimous approval for ISA100 wireless standard

The International Society of Automation announced that ANSI/ISA-100.11a-2011, "Wireless Systems for Industrial Automation: Process Control and Related Applications," has been unanimously approved by the International Electrotechnical Commission as an international standard.

Eastern Singapore to receive second major water supply plant

PUB has selected BESIN-UEN Consortium as the Preferred Bidder for the second NEWater Plant located in the region of Changi, Singapore. The facility is expected to add another 50 million gallons per day to the nation's water supply.

FOLLOW US ON SOCIAL MEDIA