Sandia researchers develop unique 'surfactant' material

June 8, 2005
A new class of materials developed by researchers at Sandia National Laboratories in Livermore, Calif., may prove useful in wastewater processing, textile manufacturing, biomedical diagnostics, and other applications requiring modification of surface properties of liquids or solids...

LIVERMORE, CA, June 6, 2005 (BUSINESS WIRE) -- A unique class of materials developed by researchers at Sandia National Laboratories in Livermore, Calif., may prove useful in textile manufacturing, biomedical diagnostics, and other applications requiring the modification of surface properties of liquids or solids.

Sandia's cleavable (easily separated) surface active agent (or, "surfactant"), based on Diels-Alder chemistry, differs from other surfactants in that it can be thermally degraded and easily removed in an inexpensive, environmentally harmless manner.

Scott Vaupen, a business development associate at Sandia, said commercially available thermally cleavable surfactants would enable industrial practices where it is desirable to diminish foaming or surface-active properties over time, in drug delivery, and where biodegradability is a primary concern. "They could prove useful in diverse fields as textile processing, electronics fabrication, sample management, wastewater processing, cleavable phase transfer reagents, and other applications," said Vaupen.

Traditional surfactants are difficult to remove from processes in which they are employed. Some surfactant systems require the invasive addition of an acid or base to separate the surfactant into fragments in order to eliminate surface active properties. Such invasive use of additional reagents usually necessitates costly post-treatment of the system in order to achieve acceptable downstream processing conditions.

Sandia's materials are the first known examples of a surfactant that can be thermally degraded in a benign manner. Five anionic surfactants are available which incorporate hydrophilic and hydrophobic segments that covalently degrade at elevated temperatures. The surfactants behave like classic surface active agents, and form micelles after reaching certain concentrations in water. Upon separation, the surfactants lose all surface-active behavior.

Surfactants, when used in small quantities, reduce surface tension in a fluid or the interfacial tension between two immiscible fluids, such as oil and water. They can be particularly useful in accomplishing the wetting or penetration of solids by aqueous liquids and serve in the manner of detergent, emulsifying, or dispersing agents. They are more effective than soap in certain situations and are used for such purposes as cleaning, wetting, and dispersing.

Sandia (www.sandia.gov) is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

###

Sponsored Recommendations

ArmorBlock 5000: Boost Automation Efficiency

April 25, 2024
Discover the transformative benefits of leveraging a scalable On-Machine I/O to improve flexibility, enhance reliability and streamline operations.

Rising Cyber Threats and the Impact on Risk and Resiliency Operations

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

State of Smart Manufacturing Report Series

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

SmartSights WIN-911 Alarm Notification Software Enables Faster Response

March 15, 2024
Alarm notification software enables faster response for customers, keeping production on track