Research reveals pressing need to better understand water use in America's rivers

Sept. 15, 2015
A new study conducted by Purdue University reveals a pressing need to better understand water use in America's rivers, with implications for drought-stricken regions of the country. 

WEST LAFAYETTE, IN, Sept. 15, 2015 -- A new study conducted by Purdue University (PU) reveals a pressing need to better understand water use in America's rivers, with implications for drought-stricken regions of the country. Findings from the study show that virtually all of the water entering the Wabash River in Indiana, for example, during summer months is withdrawn and then returned to the waterway.

"In a nutshell, in the summertime, we generally use what is equivalent to the entire volume of the Wabash River so that by the time the river reaches the confluence of the Ohio River, the water in the Wabash on average has been through one human engineered system, which includes wastewater treatment plants and power utilities," said Loring Nies, a professor in the Lyles School of Civil Engineering and in the Division of Environmental and Ecological Engineering at PU.

"The Wabash river basin, which encompasses most of the state of Indiana, is already at a tipping point of fully exploiting its water resources," he added. The research also has implications for other U.S. rivers, which undergo the same cycle of low rainfall during summer months. "The amazing thing about this is that in Indiana, we rarely have droughts, but we're still using the whole Wabash River," said Chad Jafvert, also a PU professor in the same programs. Likewise, doctoral student Julia Wiener led the research.

One hurdle in better understanding how much water is flowing into and out of America's waterways is the patchwork of data available from various agencies. No central clearinghouse exists for this type of information.

"State and federal agencies collect plenty of data, but it's not coordinated in a way that anybody who's managing water resources in a large basin, like the whole Wabash River, can easily combine and use," Wiener said. "There needs to be a watershed-scale understanding that simultaneously keeps track of the volume of water flowing into the river and how much water is being extracted, and not just from the surface sources but from the groundwater sources as well. That way, we will be able to better understand the human-driven water cycle in our watersheds."

The Wabash River has peak flows in January, February and April. In August, September and October, the river flow is at its lowest flow rate -- a cycle seen in most U.S. rivers, Nies said. "At the low-flow rates, we are essentially using all of the water, which until this research, nobody understood," he noted. "Another way to put it is that we are essentially emptying the river out and then filling it back up continuously."

Based on the findings, the researchers have determined that suggestions of reusing wastewater for irrigation and other consumptive purposes may be detrimental to the river. "Back in 2012 when we were having a drought in Indiana, people were looking at reusing wastewater for irrigating," Jafvert said. "Well, if you diverted wastewater to irrigation instead of letting it flow back into the river, then the river flow's going to get even lower. The point is, the river is not this immense untapped source of water that's available for us to use in times of stress. It's already being used."

A potential strategy could be to collect and store water during times of high flow." During low-flow periods, water flows into the river at a rate of 165 cubic meters per second, and people are withdrawing about 162 cubic meters per second, according to data from gauging stations dotted along the river throughout the state. Water being discharged into the river from power utilities during the summer accounts for most of the inflow (about 80 percent), with the remainder coming from sources such as municipal wastewater treatment facilities.

"This is not bad as long as the treatment plants are doing what they are supposed to be doing," Jafvert said. For example, the treated wastewater is disinfected to remove any remaining pathogens. Power utilities use the water to cool power plants. "We do a lot of unplanned water reuse because we discharge it at one point, and then a city downstream withdraws it. So part of what they are withdrawing is treated wastewater," he noted. "It's been in the river for maybe one or two days, but it still has that treated wastewater component."

During the driest months, water enters the river from the surrounding aquifer, a natural subsurface source. "So when you have two weeks of no rain in the summer, the river is still running because you've got groundwater going into it," Jafvert said. "But you also have pipe flow going into it from people, from wastewater treatment plants, from power utilities, and from other industries."

The findings have implications for water-challenged California, where residents have resisted calls to reuse treated wastewater that is now discharged to the Pacific Ocean. "People are resistant to reusing water because they don't want to use treated wastewater as their drinking water source, but in the Midwest, we do it all the time. It's called a river system," Jafvert said.

The work is ongoing, and Wiener will extend the research into a larger watershed, possibly the Mississippi River system.


Sponsored Recommendations

SmartSights WIN-911 Alarm Notification Software Enables Faster Response

March 15, 2024
Alarm notification software enables faster response for customers, keeping production on track

Automated Fresh Water Treatment

March 15, 2024
SCADA, Automation and Control for Efficient and Compliant Operations

Digital Transformation Enables Smart Water

March 15, 2024
During this webinar we will discuss factors driving the transformation to digital water, water industry trends, followed by a summary of solutions (products & services) available...

Automation for Water Treatment and Distribution Systems

Jan. 31, 2024
Dependable, Flexible Control Solutions to Maximize Productivity