Study examines potential for using wastewater as feedstock for algae-based biofuels

In one of the first studies to examine using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could grow high-value strains of oil-rich algae while removing over 90 percent of nitrates and 50 percent of phosphorous from wastewater.

89399 Web

April 6, 2015 -- In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found that they could easily grow high-value strains of oil-rich algae while simultaneously removing more than 90 percent of nitrates and more than 50 percent of phosphorous from wastewater. The findings are based on a five-month study at a wastewater treatment plant (WWTP) in the city of Houston, Texas.

"Biofuels were the hot topic in algaculture five years ago, but interest cooled as the algae industry moved toward producing higher-value, lower-volume products for pharmaceuticals, nutritional supplements, cosmetics, and other products," said lead author Meenakshi Bhattacharjee, a member of Rice's biosciences faculty. "The move to high-value products has allowed the algaculture industry to become firmly established, but producers remain heavily dependent on chemical fertilizers. Moving forward, they must address sustainability if they are to progress toward producing higher-volume products, 'green' petrochemical substitutes and fuels."

Bhattacharjee said the algae industry's reliance on chemical fertilizers is a "double whammy" for algae producers because it both reduces profit margins and puts them in competition with food producers for fertilizers. A 2012 National Research Council report, for example, found that "with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water and nutrient resources."

The 2012 report also pointed to wastewater-based cultivation as a potential way to make algae production sustainable. An added appeal is that the method could potentially address a looming environmental problem: nutrient pollution in U.S. waterways. According to the Environmental Protection Agency, nutrient pollution from excess nitrogen and phosphorous -- the two primary components of chemical fertilizers -- is "one of America's most widespread, costly and challenging environmental problems."

WWTPs currently have no cost-effective means of removing large volumes of nitrates or phosphorous from treated water, so algae production has the potential of solving two problems at once, said study co-author Evan Siemann, Rice's Harry C. and Olga K. Wiess professor of biosciences. "The idea has been on the books for quite a while, but there are questions, including whether it can be done in open tanks and whether it will be adaptable for monoculture -- a preferred process where producers grow one algal strain that's optimized to yield particular products," he said. "We were surprised at how little had been done to test these questions. There are a number of laboratory studies, but we found only one previous large-scale study, which was conducted at a [WWTP] in Kansas."

89399 Web
Rice University scientists found they could easily grow high-value strains of oil-rich algae while removing over 90 percent of nitrates and 50 percent of phosphorous from wastewater. (Credit: E. Siemann/Rice University)


Siemann noted that the Rice study was made possible by the participation of the Houston Department of Public Works and Engineering, which helped Rice's research team set up a test involving 12 open-topped, 600-gallon tanks at one of the city's satellite WWTPs in July 2013. The tanks were fed with filtered wastewater from the plant's clarifiers, which remove suspended solids from sewage. Various formulations of algae were tested in each tank. Some were monocultures of oil-rich algal strains, and others contained mixed cultures, including some with local algal strains from Houston bayous. Some tanks contained fish that preyed upon algae-eating zooplankton.

"Prior research had suggested that diverse assemblages of algal species might perform better in open tanks and that fish might keep algae-eating zooplankton from adversely affecting yields," Siemann said. "We recorded prolific algal growth in all 12 tanks. Our results are likely to be very encouraging to algae producers because the case they would prefer -- monocultures with no fish and no cross-contamination -- was the case where we saw optimal performance."

Bhattacharjee added that more research is needed to determine whether wastewater-based algaculture will be cost-effective and under what circumstances. For example, the algae in the Rice study was four times more effective at removing phosphorous than were the algae in the Kansas study. She said that could be because the Houston test was performed in summer and fall, and the tanks were about 30 degrees warmer on average than the tanks in Kansas.

"Using wastewater would be one of the best solutions to make algaculture sustainable," Bhattacharjee said. "If temperature is key, then cultivation may be more economical in the Southeast and Southwest." She noted that other factors, like starting levels of nitrogen and phosphorous, might have caused a rate-limiting effect. "These are the kinds of questions future studies would need to address to optimize this process and make it more attractive for investors," she said.

See also:

"Algae from clogged waterways could serve as biofuels, fertilizer, research finds"

"New partnership paves way for advanced use, treatment of biosolids as a fertilizer"

"Nutrient Recovery Technology Transforms World's Largest Wastewater Treatment Plant"

###

More in Wastewater