Delivering Clean Water With Ceramics

March 24, 2014
Ceramic filter technologies remove pathogens and improve water quality

About the author: Tim Evans is business development executive (North America) for Doulton Water Filters. Evans can be reached at [email protected] or +44.1782.66.44.30.

Nearly two centuries after Henry Doulton invented it, the ceramic water filter continues to be manufactured by the millions. It plays a significant role in the provision of clean, safe water throughout the world.

The filter elements are produced using modern manufacturing techniques to provide a hollow, porous ceramic that is fired at temperatures in excess of 1,830°F. They are most often made from diatomite, which in its raw state is a chalky, fine-grained, low-density material.

Diatomite contains a high percentage of silica, has a cellular nature, and is characterized by a porosity of around 80%. Most people think of ceramics as brittle, but the way the shaped diatomite is sintered, often with organic binders and lubricants, aids densification and produces a strong final component.

Why Ceramic?

The smaller the pore size in the filter wall and the more tortuous the path the water must follow, the more effective the particle removal process. Ceramics have a small, complex, interconnected pore structure — sometimes down to 0.2 µ — making them ideal for the job.

Furthermore, major manufacturers such as Fairey Industrial Ceramics, which has been producing the Doulton range for 187 years in the U.K., are able to accurately control this pore structure, thus ensuring product consistency. Ceramic filters are chemically inert, so they can be used right away or brought out of storage after many years, and will perform with identical effectiveness.

Shaping Up

When it comes to the fired ceramic tubes, there are two established shapes: the candle and the cartridge, designed in such a way that the water passes from the outside to the inside.

Ceramic candles are formed with a domed, closed end at the base and are open at the top. The open end is closed off with a food-grade plastic mount, which enables the candle to fit into a filter housing.

By contrast, ceramic cartridges are formed with both ends open, which also are closed off with plastic mounts. The mount at the base is completely closed, while the one at the top has an opening through which the filtered water flows after it has passed through the ceramic.

In both configurations, ceramic tubes offer a rigorous two-stage filtration process — surface filtration and then depth filtration — in order to trap particles and pathogens.

In surface filtration, particles larger than the pore cannot pass through, and smaller particles hitting the pore at the same time collide, adhere and form a bridge. Additionally, due to inertial mass, particles do not automatically follow the water flow through the pores anyway, and can collide with non-porous areas of the tube wall and be held there.

Particles that do penetrate the ceramic wall then are subjected to depth filtration. This works in three ways. Particles much smaller than the pores are intercepted within the ceramic wall, because the water is forced to flow through a complex series of labyrinths. The path through the filter has many sharp angles due to the complicated ceramic structure, so particles become trapped within it.

Secondly, as with bridging on the surface, small particles can combine to form clusters large enough to become trapped in dead-end cavities.

Thirdly, dispersion forces cause other small particles to become attracted to the ceramic and simply adhere to it in a process known as adsorption.

The versatility of ceramic filters also can be enhanced when used in tandem with special water treatment cartridges. Typical examples would be prefilters, to prevent premature clogging of filters in high-sediment areas; limescale reduction cartridges, for hard water areas; and fluoride reduction cartridges, which help reduce both natural and added fluoride.

Trusted Technology

In addition to removing dirt particles, ceramic filters have been shown via independent test results to be effective against pathogenic bacteria, microbial cysts and heavy metals. At the same time, they leave the oxygen and trace mineral content unchanged, resulting in a clean, fresh taste.

All around the world, wherever consumers rely on untreated water supplies, stored water or simply only have access to polluted water, people face potentially fatal disease through the ingestion of pathogenic bacteria.

Added to that is the danger posed by waterborne microbial cysts — resistant to chlorine treatment — that cause stomach and intestinal problems, including potentially life-threatening diarrheal disease. The size of the threat cannot be underestimated: Globally, diarrheal disease kills 800,000 children every year.

When it comes to pathogenic bacteria, ceramic systems can filter out the organisms and parasites that cause cholera, typhoid fever, cryptosporidiosis, amoebic dysentry, colibacillosis, schistosomiasis and more. Additionally, more than 99.99% of microbial cysts are removed.

Other undesirables elements in water also can be eliminated. Chlorine affects both the taste and odor of water, but is easily addressed with the addition of activated carbon to the ceramic filter. Where lead contamination is an issue, the inclusion of an ion exchange resin effectively deals with the problem. 

The Case for Ceramic

  • Effective Barrier: Ceramic in Doulton systems can remove virtually 100% of submicron particles and pathogenic bacteria from drinking water.
  • Long Life: Ceramic filters are easily cleaned and can be cycled several times. A useful life of six months is not untypical. This makes them cost-effective.
  • Anti-Bacterial: The locking of silver within the ceramic structure inhibits microbiological growth on the filter, meaning there is no need to sterilize the candles.
  • Inert: Because they are chemically inactive, ceramic filters do not add anything to the water. 
  • Multi-Stage Filtration: Other filter media can be put inside the candles to make them more effective. Options include activated carbon to remove chlorine, or ion exchange media to remove heavy metals such as lead.
  • Mineral Retention: Minerals that are beneficial to health are not filtered out by ceramic; they are retained in the water.
  • Environment: Ceramic filter candles are a 100% natural product.
  • Compliance: Major manufacturers, such as Fairey, are ISO 9001:2008 compliant and hold NSF Intl. and Water Regulations Advisory Scheme certificates.

Download: Here

About the Author

Tim Evans

Sponsored Recommendations

ArmorBlock 5000: Boost Automation Efficiency

April 25, 2024
Discover the transformative benefits of leveraging a scalable On-Machine I/O to improve flexibility, enhance reliability and streamline operations.

Rising Cyber Threats and the Impact on Risk and Resiliency Operations

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

State of Smart Manufacturing Report Series

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

SmartSights WIN-911 Alarm Notification Software Enables Faster Response

March 15, 2024
Alarm notification software enables faster response for customers, keeping production on track