The researchers focused on electrochemical sulfur oxidation, which requires low energy input and enables fine-tuned control of final sulfur products. (Whereas some products, such as elemental sulfur, can deposit on electrodes and slow down chemical reactions, others, like sulfate, can be easily captured and reused.) If it worked effectively, the process could be powered by renewable energy and adapted to treat wastewater collected from individual buildings or entire cities.
Making novel use of scanning electrochemical microscopy — a technique that facilitates microscopic snapshots of electrode surfaces while reactors are operating — the researchers quantified the rates of each step of electrochemical sulfur oxidation along with the types and amounts of products formed.
They identified the main chemical barriers to sulfur recovery, including electrode fouling and which intermediates are hardest to convert. They found, among other things, that varying operating parameters, such as the reactor voltage, could facilitate low-energy sulfur recovery from wastewater.
These and other insights clarified trade-offs between energy efficiency, sulfide removal, sulfate production and time. With them, the researchers outlined a framework to inform the design of future electrochemical sulfide oxidation processes that balance energy input, pollutant removal and resource recovery.
Looking toward the future, the sulfur recovery technology could also be combined with other techniques, such as recovery of nitrogen from wastewater to produce ammonium sulfate fertilizer. The Codiga Resource Recovery Center, a pilot-scale treatment plant on Stanford’s campus, will likely play a large role in accelerating future design and implementation of these approaches.
“Hopefully, this study will help accelerate adoption of technology that mitigates pollution, recovers valuable resources and creates potable water all at the same time,” said study lead author Xiaohan Shao, a PhD student in civil and environmental engineering at Stanford.