Food-grade plant extracts remove microplastics from wastewater

March 31, 2022
Overall, the plant-based polysaccharides — from okra paired with either fenugreek or tamarind — could work as well as the traditional flocculant polyacrylamide.

In many cuisines, okra serves as a master thickener of stews and soups. The goo from that fruit and other plants, such as aloe, cactus and psyllium, can also clean water and wastewater of some types of solid pollutants, as well as some that are dissolved. Now, researchers have demonstrated that combinations of these food-grade plant extracts can remove microplastics from wastewater.

The researchers presented their results at the spring meeting of the American Chemical Society (ACS). The meeting featured more than 12,000 presentations on a wide range of science topics.

The health effects of ingesting microplastics — tiny pieces of plastic 5 mm or smaller — are currently unclear, but studies suggest that people unintentionally consume tens of thousands of these particles every year.

“We think that microplastics by themselves may not be much of a health hazard, but anything that they get into or any type of toxic substance that gets attached to these plastics could go inside our bodies and cause problems,” says Rajani Srinivasan, the principal investigator for the project.

In the typical wastewater treatment process, microplastics are removed from water in two steps. First, those that float are simply skimmed off the top of the water. However, this step only removes a fraction of the total microplastics that are present. The rest must be removed by adding flocculants.

Srinivasan, who is at Tarleton State University, points out that some of the substances currently used to remove contaminants are potentially harmful, so she and her team have been investigating nontoxic alternatives. For example, one common flocculant, polyacrylamide, can break down into toxic chemicals under certain conditions.

Previously, Srinivasan had studied the use of food-grade plant extracts as nontoxic flocculants to remove textile-based pollutants from wastewater. Her team specifically focused on polysaccharides in the extracts because these biopolymers possess the appropriate chemical and biological properties to attract and capture pollutants like dyes or even bacteria.

“I was working with the removal of microorganisms and things like that, and I thought, ‘Why not try microplastics?’” she says.

So, the team of undergraduate and master’s students tested polysaccharide extracts from fenugreek, cactus, aloe vera, okra, tamarind and psyllium — all of which are food-grade materials — as flocculants to capture microplastics. They tested compounds from the individual plants, as well as in different combinations. To do this, they added these extracts to various microplastic-containing water sources. Then, they examined microscope images of the flocculant clumps before and after treatment and counted the microplastics to determine how many particles had been removed.

In their experiments, the researchers found that polysaccharides from okra paired with those from fenugreek could best remove microplastics from ocean water, whereas polysaccharides from okra paired with those from tamarind worked best for freshwater samples. Overall, the plant-based polysaccharides worked better than, or as well as, the traditional flocculant polyacrylamide, depending on the combination of extracts and water source.

Importantly, the plant-based flocculants can be implemented in existing water treatment processes.

“The whole treatment method with the nontoxic materials uses the same infrastructure,” says Srinivasan. “We don’t have to build something new to incorporate these materials for water treatment purposes.”

Looking forward, she and her team will continue tailoring the ratios and combinations of plant-based flocculants to optimize removal of different microplastic types from a variety of water sources, such as ocean water, estuary water, freshwater, and groundwater. They also plan to scale up their nontoxic microplastics removal process in field studies outside of the lab. Ultimately, they hope to commercialize this new, plant-based method to an industrial scale.

Sponsored Recommendations

SmartSights WIN-911 Alarm Notification Software Enables Faster Response

March 15, 2024
Alarm notification software enables faster response for customers, keeping production on track

Automated Fresh Water Treatment

March 15, 2024
SCADA, Automation and Control for Efficient and Compliant Operations

Digital Transformation Enables Smart Water

March 15, 2024
During this webinar we will discuss factors driving the transformation to digital water, water industry trends, followed by a summary of solutions (products & services) available...

Smart Water Solutions: Transforming the Water Universe

March 15, 2024
Water is our most valuable resource, and efficient and effective water and wastewater handling is crucial for municipalities. As industry experts, you face a number of challenges...